城市污水BOD與COD關系的探討
出 自: 《中國給水排水》 1994年第4期第17頁
發表時間: : 1994-4
郭勁松;龍騰銳
(重慶建筑工程學院)
摘要:從BOD與COD的構成及降解動力學出發,探討了BOD與COD的相關關系,得到了BOD 5 與COD的相關模型。應用某城市污水的實測數據和數理統計方法對模型進行了檢驗,表明該模型具有適用性。提出并討論了當量耗氧系數和城市污水最大BOD 5 /COD 之值。
1 前言
化學需氧量(COD)和生化需氧量(BOD)是用來表明廢水特性,評價廢水處理構筑物效率的重要指標。COD是在酸性條件下用強氧化劑,將水中有機物氧化為簡單穩定的無機物所消耗的氧量,其測定歷時短,不受毒物限制,測定設備簡單易于普及。BOD表示水中有機物在有氧條件下,被微生物分解代謝所消耗掉的溶氧量,它間接地表示了水中可生化有機物的量。盡管BOD作為評價有機污染和生物處理構筑物性能的綜合指標已被廣泛采用,但是它測定所需歷時長(一般用5日計為BOD 5 ),不能及時迅速地反映生物處理構筑物的運行情況,測定條件又要求嚴格,且易受到水中毒物、營養條件以及菌種的干擾,因此不易操作分析。近年來,諸多環境學工作者在快速測定BOD方面做了許多工作。如以30℃BOD代替BOD 5 [1] ,用固定化微生物傳感器測定BOD [2] 等;另一方面試圖尋求廢水中BOD 5 與COD之間的相互關系 [3]~[5] ],以期能根據測得的COD值和其相關方程預報出BOD 5 的值。本文擬從BOD與COD構成和降解動力學出發,對BOD與COD 的關系進行分析,以求得城市污水BOD 5 與COD的關系模型。
2 BOD、COD特點的分析
2.1 COD組成分析
在大多數情況下,污水中許多能被重鉻酸鉀氧化的有機化合物,不一定能被生物化學作用氧化,某些無機離子如硫化物、硫代硫酸鹽、亞硫酸鹽、亞鐵離子等可被重鉻酸鉀氧化,卻不能被BOD實驗測定出含量來。因化COD值主要包括兩部分;即不能被微生物降解的物質(COD NB )和能被微生物降解的有機物質(COD B ),表示成關系式為:
COD=COD B 十COD NB (1)
2.2 CON NB 與COD分析
以往對BOD 5 和COD相關性的研討中,大多是假設COD中的COD NB 為常數。這一假設顯然不符合實際,從普遍意義上講COD NB 不可能是常數,而是一個時間序列的隨機變量。對于同一種廢水、在同一斷面取樣,取樣的時刻、取樣時的外部條件、測定中的誤差以及測試反應進行的程度等會使COD值具有隨機性,從而使COD NB 也具有隨機特性,但并不意味著兩個值完全不具有確定性。如前述,COD NB 無非是由兩類物質造成,即不可被生物降解的有機物和不能被生物所利用的還原性無機鹽。就工業污水而言,如果生產工藝流程固定,生產的產品、原料和生產條件相同,那么污水中COD的相對組成應該是穩定的,即COD NB /COD的比值應保持不變。對于某一地區的生活污水而言,由于生活習慣、生活條件、食物結構變化不大或基本相同,那么排出的生活污水中的各種有機和無機物的相對組成應該是穩定的,即是COD NB /COD的比值也應保持為常數。按照這一原則,假定:
COD NB =KCOD (2)
2.3 BOD與COD的分析
BOD與COD的關系,可根據微生物對有機物降解生物化學過程加以分析,如圖1。作為微生物營養基質、可被微生物降解的有機物(COD),一部分通過微生物的呼吸代謝(異化作用)被氧化分解為無機物;另一部分通過合成代謝(同化作用)成為細胞物質,即表現為合成細菌體Ma,而Ma一部分通過內源呼吸而無機化,另一部分則表現為菌體的增殖。因此實際上BOD U ≠COD B ,而應<COD B ,且應有如下關系:
BOD U =A·COD B +BC·COD B
=(A+BC)·COD B (3)式中 BOD U 總生化需氧量
COD B ——可被微生物降解的化學需氧量
A——呼吸代謝氧化有機物的比例系數
B——合成代謝氧化有機物的比例系數
C——內源呼吸氧化細胞物質的比例系數
3 COD與BOD 5 的相關關系
3.1 相關方程
有實驗研究表明,城市污水基質的降解過程可用一級動力學模式來描述,亦即有:
dc/dt=-K C ·C (4)
dl/dt=-K L ·L (5)式中 C——COD B 的濃度
L——BOD的濃度
t——時間
在只要滿足有氧條件、有機物質參與生化反應這一概念下,反應器內剩余BOD和剩余COD量的降解,應存在如下關系式:
式中 α——有機物在生物降解時伴隨的耗氧當量系數
由式(6)得:
式中 L o 、C o ——生化反應開始時COD B 與BOD的濃度
因此有,在反應進行得很徹底時:
由式(1)和(2)得:
CODB=(1-K)COD (10)
將式(9)、(10)代入式(8)得:
表1為重慶市某污水干管總排放口處的實測資料。采用最小二乘法對上述數據進行線性回歸,得回歸直線方程為:
BOD 5 =0.57COD (13)
回歸直線如圖2所示。
3.2 直線回歸方程的檢驗
在求得回歸直線方程后,其規律性強不強以及能否利用它來根據COD的測定值預報BOD 5 值?是這類回歸經驗方程實用性好壞的關鍵。因此,必須通過對回歸直線方程進行假設檢驗,即檢驗線性回歸模型是否成立,而最終歸結為回歸系數的檢驗。根據數理統計知,檢驗線性回歸的方法是:給定顯著水平α,計算得:
的數值,若|T|≥t α/2 (n-2)則認為線性回歸顯著。
式中T——統計變量 ——回歸系數的無偏估計值
X i 自變量實測值 ——自變量算術平均值
δ * ——方差的無偏估計值
t α/2 (n-2)——自由度為(n-2)的t分布
n——子樣容量
此處,取α=1%,經計算T=4.9431,查表t α/2 (9)=3.2498 [6] 因為T>t α/2 (9),所以線性回歸顯著。BOD 5 與COD兩者線性相關性很好。
研究廢水BOD與COD的相關性并建立回歸方程的目的之一,是利用易測的COD指標來預報廢水的BOD 5 。如表2所示城市污水BOD 5 的實測值與預報值的比較中可以看出,預報的最大絕對誤差為-31.41mg/L,最大相對誤差為-17.5%;平均絕對誤差為0.17mg/L,平均相對誤差為-3.7%。因此可以認為預報的精度較高。
4 討論
4.1 耗氧當量系數a的意義
由式(3)和式(7)有:
式(15)說明,耗氧當量系數α是呼吸代謝、合成代謝和內源呼吸代謝的綜合指標,是隨生化反應進程歷時變化的一個過程變量,它與BOD和COD B 的反應速度常數有關,表達了BOD與COD之間的關系,具有普遍意義,不同于以往研究中關于BOD與COD的簡單常數比例關系。而系數A、B、C是一種描述物質比例關系的狀態量,因此a把過程量和狀態量聯系了起來。僅當BOD和COD B 的反應速度常數相等(K L =K C )時或者反應歷時足夠長時,它才在數值上等于呼吸代謝氧化比例系數加上合成代謝氧化比例系數與內源呼吸比例系數乘積的和,并且對于同一種污水才可能是常數。也就是說不同污水具有不同的BOD與COD比例關系,是由于所含有機物的性質和數量不同,以及反應器內微生物生長狀況、生化反應過程和微生物生態系統的不同而產生的。
4.2 關于最大BOD 5 /COD的值
由前面分析知:
由此可見,BOD 5 /COD的值直接與BOD 的降解速率常數(K L )有關,也與A、B、C代謝常數有關。這些系數可以通過平行的間歇式生化培養實驗來確定,在20℃下連續培養20d以上,逐日測定其同一份培養液的COD和BOD 并分析培養液的組份,回歸有機物降解過程線確定K L 和比例系數A、B、C值。對于城市污水,一般認為A=1/3、B=2/3、C=0.8 [7] ,在20℃時K L =0.23則BOD 5 /COD的最大值為0.593,本試驗測得的BOD 5 /COD最大值為0.639,兩個值相當接近。
5 結論
①BOD與COD B 普遍講是不相等的,它們之間的關系依賴于污水的組成、微生物的反應及生態系統。
②在假設反應進行得很徹底的條件下,得BOD 5 與COD的關系式BOD 5 =K·COD,同時對某城市污水的實測資料得BOD 5 =0.57COD,通過模型檢驗證明了上述關系有相當的合理性和準確性。
③討論了城市污水BOD 5 /COD的最大值,得最大經典理論值為0.593。
6 參考文獻
1.丁淑芹、閻立榮,《環境科技》No 3,1989。
2. K.Riedel,et al"Amicrobial Sensor for BOD",Wat.Res. Vol.24,No 7,1990.
3.顧其祥,“某些純有機化合物的生化需氧量和化學需氧量”,《給水排水》No 1,1978。
4.顧夏聲編著《廢水生物處理數學模型》清華大學出版社1982。
5.田平、龍騰銳,“屠宰廢水BOD 5 與COD的相關性探討”《重慶環境科學》,Vol.10,No 6,1988。
6.汪榮鑫著,《數理統計》,西安交通大學出版社,1986。
7. C.P.L,Grady,et al,Biological Wastewater Treatment——Theory and Applications,1980.
作者通訊處:630045重慶市沙坪壩 重慶建工學院城建系
北京曉清環保集團公司與北京義力達通用機械公司于1994年5月11日在天津市亞細亞俱樂部聯合舉辦了“新技術、新設備新聞發布會”。
應邀到會的有:天津市建委新技術新產品推廣中心、天津大學環境保護研究所、天津大學建筑設計院、天津大學土木系、化工部第一設計院、中國天辰化學工程公司、天津市消防研究所、天津市建筑設計院、中國市政工程華北設計研究院、《中國給水排水》編輯部、天津市新潮設計所、天津志誠房地產公司等部門的領導、專家、教授、高級工程師以及天津市電視臺、天津今晚報、天津電臺等記者共數拾人。會上北京曉清環保集團公司韓小清總經理和北京義力達通用機械公司尹義總經理、魏玉玲工程師先后介紹了他們的專利技術和拳頭產品。
會上專家們對北京曉清環保集團公司的中水道、游泳池和埋地式污水處理等成套設備及對北京義力達通用機械公司的BYG系列小型化通用化節能型全自動氣壓給水設備,引起了極大的興趣并給予了很高的評價,希望通過會議能在天津市得到推廣應用,以帶動天津市環保事業的發展。
北京義力達通用機械公司地址:100076 北京大興縣西紅門鎮北京曉清環保集團公司地址詳本刊廣告天津市給排水學會建筑給排水學組于1994年5月20日在天津市召開淅江上虞聯豐玻璃鋼總廠產品推廣會,天津市建筑給排水學組單位的專家和高工到會,對其產品給予很高的評價。
該廠為國家二級企業,年產值已突破億萬元,主要產品為各種規格的玻璃鋼冷卻塔,特別是封閉式冷卻塔具有獨特的優點。專家們認為該廠產品質量可靠、價格便宜。
浙江聯豐玻璃鋼總廠在天津設有辦事處,地址昆明路78號1門402室,電話3345712,聯系人華春苗。
論文搜索
月熱點論文
論文投稿
很多時候您的文章總是無緣變成鉛字。研究做到關鍵時,試驗有了起色時,是不是想和同行探討一下,工作中有了心得,您是不是很想與人分享,那么不要只是默默工作了,寫下來吧!投稿時,請以附件形式發至 paper@h2o-china.com ,請注明論文投稿。一旦采用,我們會為您增加100枚金幣。